
The LASSO on Latent Indices for Regression Modeling

with Ordinal Categorical Predictors

Francis K. C. Huia,∗, Samuel Müllerb, A. H. Welsha

aResearch School of Finance, Actuarial Studies & Statistics, Australian National
University, Acton, ACT 2601, Australia

bSchool of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006,
Australia

Abstract

Many applications of regression models involve ordinal categorical predictors.
Two common approaches for handling ordinal predictors are to form a set of
dummy variables, or employ a two stage approach where dimension reduction
is first applied and then the response is regressed against the predicted latent
indices. Both approaches have drawbacks, with the former running into a
high-dimensional problem especially if interactions are considered, while the
latter separates the prediction of the latent indices from the construction of
the regression model. To overcome these challenges, a new approach called
the LASSO on Latent Indices (LoLI) for handling ordinal predictors in re-
gression is proposed, which involves jointly constructing latent indices for
each or for groups of ordinal predictors and modeling the response directly
as a function of these. LoLI borrows strength from the response to more
accurately predict the latent indices, leading to better estimation of the cor-
responding effects. Furthermore, LoLI incorporates a LASSO type penalty
to perform hierarchical selection, with interaction terms selected only if both
parent main effects are included. Simulations show that LoLI can outperform
the dummy variable and two stage approaches in selection and prediction
performance. Applying LoLI to an Australian household-based panel identi-
fied three dimensions of psychosocial workplace quality (job demands, stress,
and security) which affect an individual’s mental health in an additive and
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pairwise interactive manner.

Keywords: dimension reduction, factor analysis, factor variables,
interaction, latent variables, model selection

1. Introduction1

Many applications of regression models involve ordinal categorical pre-2

dictors. For instance, this article is motivated by the Household Income and3

Labour Dynamics in Australia (HILDA) survey, a nationally representative4

panel study that has collected data annually in Australia since 2001 (Watson5

and Wooden, 2012). Among other data collected, individuals are asked about6

their overall mental health and to respond to a series of statements concern-7

ing their current workplace situation e.g., “I have a lot of choice in deciding8

what I do at work”. For each statement, the individual provides an ordinal9

rating or score from 1 (“strongly disagree”) to 7 (“strongly agree”). One of10

the aims of the HILDA survey is to improve understanding of how various11

aspects of an individual’s workplace quality contribute their overall mental12

well-being. For instance, having both a lack of job security and increased13

job stress/strain may compound and lead to a stronger detrimental effect on14

mental health than just having either aspect on its own (e.g., Butterworth15

et al., 2013; Milner et al., 2015, 2016).16

1.1. Main Modelling Challenges For Ordinal Predictors17

How to handle (a potentially large number of) ordinal predictors is a18

common challenge in regression modeling. If the number of levels (7 in the19

case of the HILDA survey) is large for each ordinal predictor, and there20

is a-priori knowledge regarding the distances between levels, then it may21

be possible to use the raw ratings from the ordinal data (or some simple22

monotone transformation of it) as actual scores and model them as values23

from a continuous predictor (see for instance, Agresti, 2013). However, in24

many cases such a direct score-based approach may not be appropriate e.g.,25

in the HILDA survey, treating the score as a continuous predictor would26

mean that the distance between any two consecutive scores is the same, but27

there is no underlying reason why this should be the case. Instead, the two28

most popular approaches for handling ordinal predictors are as follows: 1)29

treat each ordinal predictor as a factor variable using (for example) a set of30

dummy variables; or 2) use a two stage approach where dimension reduction31
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is first applied on the ordinal predictors (e.g., factor analysis Bartholomew32

et al., 2011), and then include the predicted indices as continuous covariates33

in a regression model in the second stage.34

The first approach can often result in a high-dimensional problem, es-35

pecially if we include interactions in the model. The problem of high-36

dimensionality is frequently encountered in regression modeling, and has37

spurred considerable research into penalized likelihood methods (among other38

approaches) for variable selection, including penalties which respect the hi-39

erarchical structure of the predictors in various modeling contexts; see for40

example (Zhao et al., 2009) for generalized linear models, (Hui et al., 2017)41

for selection in generalized linear mixed models, and Tutz and Gertheiss42

(2016); Pauger et al. (2019) for categorical data. More recently, prompted43

by interest in uncovering epistatic effects in genome wide association stud-44

ies, there has been a further surge in interest on penalties which obey some45

form of marginality principle (e.g., Bien et al., 2013; Haris et al., 2016; She46

et al., 2016; Yan and Bien, 2017). While these approaches are capable of47

selecting from a large number of categorical variables and their interactions,48

they are perhaps not the most appropriate methods for handling the ordinal49

predictors in our setting. This is because the statements regarding workplace50

conditions in the HILDA survey are thought of as manifestations of latent51

indices related to various aspects of job quality (Leach et al., 2010). In turn,52

it is more sensible and appealing to explicitly construct these indices and53

enter these, instead of the ordinal variables, as covariates into a regression54

model.55

This leads to the second commonly used approach for handling ordinal56

predictors, which first involves fitting latent variable models to the ordinal57

predictors (e.g.,typically the ordinal ratings in the HILDA survey are treated58

as continuous and factor analysis is applied, Leach et al., 2010; Butterworth59

et al., 2011), and then regressing the responses against the predicted latent60

indices; other approaches such as optimal scaling (Linting et al., 2007) could61

also be used in the first stage. This two stage approach though does have62

potential drawbacks. Notably, it fails to utilize the information from the63

response to better predict the latent indices for each individual. Indeed, by64

definition latent variable models can only be fitted to more than one manifest65

(ordinal) predictor, and yet it is common to have cases where we wish to66

construct a continuous latent index from just a single ordinal predictor e.g., in67

the HILDA survey there is one particular statement on workplace conditions68

which has been argued to constitute its own latent dimension on job quality69
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(Butterworth et al., 2011; Milner et al., 2016).70

1.2. A New Approach and Main Contributions71

We propose a new method for the analysis of ordinal predictors in regres-72

sion models called the LASSO on Latent Indices (LoLI), which is motivated73

by the challenges of the dummy variable and two stage approaches discussed74

above. The key innovation of our method is to jointly construct a continu-75

ous latent index for each or for groups of ordinal predictors, and model the76

response directly as a function of these (and other predictors if appropriate)77

including potential pairwise interactions. This joint approach means LoLI78

can borrow strength from the response to more accurately predict the la-79

tent indices i.e., the scores for each individual, which in turn produces better80

estimation and inference on the corresponding regression coefficients. To per-81

form selection on main and interaction effects between the latent indices, a82

LASSO type penalty is employed which accounts for the hierarchical nature83

of the coefficients. That is, the penalty ensures that whenever an interaction84

term is selected, both its parent main effects must also be included in the85

model.86

Due to the construction of latent indices, LoLI does not require compli-87

cated group sparsity penalties to handle dummy variables. Put another way,88

compared to treating the ordinal predictors as factors, the dimensionality of89

the problem is already markedly reduced before any variable selection is per-90

formed. Alternatively, LoLI can be viewed as type of a penalized regression91

model with unknown latent scores assigned to the levels of ordinal predictors,92

except that the scores are observation-specific (in contrast to, say, Row-by-93

Column association models where the scores are the same across observations;94

see Section 6.3, Agresti, 2010).95

We emphasize that LoLI is an alternative approach to the construction96

of dummy variables for handling ordinal predictors, and is ideally suited to97

settings where there is some scientific belief that the ordinal predictors are98

manifest variables of some underlying continuous index e.g., in our motivat-99

ing HILDA survey. There are many other contexts where such a belief may100

not apply e.g., highest level of education attained with levels “no completion101

of high school”, “high school”, “vocational certificate”, and “undergradu-102

ate degree or above”, where indeed it may be better to analyze the ordinal103

predictor via the dummy variable approach.104

We propose an efficient two-step estimation approach for calculating the105

LoLI estimates, which first involves estimating cutoff parameters (which re-106
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late the observed ordinal predictors to the latent indices) by fitting marginal107

ordinal regression models to the ordinal predictors. Conditional on these108

estimates, we apply a Monte-Carlo Expectation Maximization (MCEM) al-109

gorithm (Wei and Tanner, 1990) to predict the latent indices and estimate110

and perform selection on all other parameters. We show that this two-step111

approach produces consistent estimates of the cutoffs. Regarding the choice112

of the tuning parameter, we adapt the Extended Regularized Information113

Criterion (Hui et al., 2015; Fu et al., 2017) for use with LoLI. This crite-114

rion uses a dynamic model complexity penalty that depends on the tuning115

parameter itself, resulting in more aggressive shrinkage and often to better116

finite sample selection performance than other commonly used criteria such117

as AIC or BIC.118

Simulation studies show that LoLI can outperform dummy variable and119

two stage approaches for handling ordinal predictors, in terms of estimation120

and selection performance as well as predicting the latent indices. Apply-121

ing LoLI to the motivating HILDA survey, and adjusting for potential con-122

founders such as age and gender, we identify three dimensions of workplace123

quality which affect an individual’s mental health in an additive manner:124

job demands/complexity/interest, job stress/strain, and job security. Fur-125

thermore, we found evidence that having both increased job interest and126

increased job security had an effect on mental well-being that was greater127

than each aspect of job quality on its own i.e., a positive interaction between128

these two latent indices.129

The remainder of the manuscript is structured as follows. In Section 2,130

we establish the latent indices models and subsequently define the Lasso on131

Latent Indices (LoLI). In Section 3, we detail our two-step estimation ap-132

proach for LoLI and discuss how to choose the tuning parameter using a new133

information criterion. Section 4 presents a numerical study which shows that,134

by jointly constructing the latent indices and building the regression model,135

LoLI can outperform dummy variable and other two stage approaches in se-136

lecting and/or predicting the latent indices. In Section 5, we illustrate the137

application of LoLI on the motivating HILDA survey, including its ability to138

straightforwardly investigate interaction effects between different dimensions139

of job quality. We conclude with a discussion of areas of future research in140

Section 6. We provide R code for implementing LoLI as part of the Support-141

ing Information.142
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2. The LASSO on Latent Indices143

Consider a set of i = 1, . . . , n independent observations, consisting of a144

univariate continuous response yi, a q-vector of predictors zi that will not be145

dimension reduced, and a p-vector of ordinal predictors xi = (xi1, . . . , xip)
>,146

such that xij can take values 1, . . . , Lj. In this article, we focus on the case147

where both p and q are less than n, given this is the setting most relevant to148

the motivating HILDA survey (see Section 5). We acknowledge that future149

research may be required to handle situations where p and/or q exceed n.150

Conditional on the predictors, we assume yi (or some suitable transfor-151

mation of it) is normally distributed with mean µi as specified below in152

equation (1) and variance σ2. We focus on estimation and inference of the153

main effects and possible pairwise interactions between the ordinal predic-154

tors. For ease of presentation, we assume there are no interactions between155

zi and xi, although the developments below can be extended to handle such156

interactions.157

As reviewed in Section 1.1, one possible approach is to set up a (Lj − 1)-158

vector of dummy variables for each ordinal predictor and fit a linear model159

to these. However, this can lead to a high-dimensional regression model:160

if zi involves only an intercept, then there are dLM = 1 +
∑p

j=1(Lj − 1) +161 ∑
1≤j<k≤p(Lj − 1)(Lk − 1) coefficients present. Even if n > p, it could be162

that dLM > n and thus the coefficients cannot be estimated by standard163

regression techniques. To overcome this, the principle behind LoLI is to164

jointly construct a latent index for each or for groups of ordinal predictors165

and build a regression model directly from these indices. We first discuss the166

limiting case of LoLI with a separate latent index for each ordinal predictor,167

and then discuss the case for groups of ordinal predictors in Section 2.1.168

For j = 1, . . . , p, define a vector of cutoffs ξj,0 = −∞ < ξj,1 = 0 < . . . <169

ξj,Lj−1 < ξj,Lj
=∞, and a continuous latent index uij where ξj,l−1 < uij < ξj,l170

if and only if xij = l for l = 1, . . . , Lj. Analogously to cumulative link models171

for ordinal responses, it is common to set ξj,1 = 0 for all j = 1, . . . , p to ensure172

the parameters are identifiable (Agresti, 2010). Letting ui = (ui1, . . . , uip)
>

173

denote the p-vector of latent indices for observation i, the conditional mean174

of the response is regressed against these latent indices as175

E(yi|zi,ui) = µi = z>i α+ u>i β +
∑

1≤j<k≤p

uijuikγjk, (1)

where the vectors α and β are the regression coefficients corresponding to176
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zi and the main effects for the latent indices, respectively, and γjk is the177

interaction coefficient between latent indices j and k. Compared to using178

dummy variables, we see that by modeling the conditonal expectation in179

terms of latent variables, the number of coefficients to estimate and select180

from is substantially reduced: if zi involves only an intercept, then dLoLI =181

1 + p + 2−1p(p − 1) < dLM with the difference depending on the Lj’s. Also,182

with continuous latent indices we are not limited to just linear terms, and183

may wish to include polynomial or smoothing terms for uij depending on the184

question of interest. For simplicity though, in this article we focus on the185

model as defined in equation (1). Also, with the inclusion of
∑p

j=1(Lj − 2)186

free cutoff parameters, the total number of parameters to estimate may still187

be quite high. But the key point is that the number of parameters involved188

in the regression component of the model is markedly reduced.189

For observation i and ordinal predictor j, define x∗ij = (x∗ij1, . . . , x
∗
ijLj

)>,190

where x∗ijl = 1 if xij = lj for lj = 1, . . . , Lj and zero otherwise. Let Ψ =191

(α>,β>,γ>, σ2, ξ>1 , . . . , ξ
>
p )> denote the full parameter vector, where γ =192

(γ12, . . . , γ1p, γ23, . . . , γ(p−1)p)
> and ξj = (ξj,2, . . . , ξj,Lj−1)

>. The marginal193

log-likelihood for the latent indices model, with mean structure given by194

equation (1), is defined as195

`(Ψ) =
n∑

i=1

`i(Ψ) =
n∑

i=1

log


∫
f(yi|ui, zi,Ψ)

p∏
j=1

 Lj∏
l=1

f(x∗ijl|uij,Ψ)f(uij) duij


=

n∑
i=1

log


∫
f(yi|ui, zi,Ψ)

p∏
j=1

 Lj∏
l=1

I(ξj,l−1 < uij < ξj,l)
x∗
ijlf(uij) duij

 ,

(2)

where f(yi|ui, zi,Ψ) = N (µi, σ
2) is a normal density with µi given by equa-196

tion (1) and variance σ2, f(uij) is theN (0, 1) density function, and we choose197

f(x∗ijl|uij,Ψ) to be the indicator function I(ξj,l−1 < uij < ξj,l)
x∗
ijl . Using the198

standard normal density for uij along with the suggested indicator function199

is analogous to the latent variable parameterization for cumulative probit re-200

gression (Agresti, 2010), and is a standard choice in item response and latent201

variable models (Skrondal and Rabe-Hesketh, 2004). We can also replace the202

indicator function with probabilistic choices; this is discussed in Section 2.1.203

The assumption of zero mean and unit variance for f(uij) ensures that the204

parameters in the latent indices model are identifiable i.e., avoiding loca-205
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tion and scale invariance. The assumption of independence between the uij’s206

could be relaxed to allow for correlated latent indices, although previous re-207

search has shown that this assumption is not overly restrictive in practice,208

and similarly that the normality assumption can be robust to misspecifica-209

tion of the shape of the latent index distribution (Wedel and Kamakura,210

2001); see also the relevant discussion in Section 6.211

Equation (2) embodies the joint nature of LoLI in that the latent indices212

are simultaneously constructed from the x∗ij’s and used as covariates in the213

regression model for the mean of yi. In doing so, we can borrow strength from214

the latter in order to better predict the latent indices uij i.e., the scores for215

each observation, which in turn should lead to better estimation and inference216

of coefficients β and γjk’s. Indeed, this “limiting” case where each ordinal217

predictor has its own latent index demonstrates the clearest advantage of218

LoLI over two stage approaches: if we were to construct the latent indices219

based solely on the x∗ij, then the predictions would still show the same degree220

of discretization as the ordinal predictors. By borrowing information from221

the (continuous) response, LoLI produces improved predictions of the uij’s.222

To perform variable selection on main and interaction effects associated223

with the latent indices, we propose combining equation (2) with a LASSO224

type penalty as follows.225

Definition 2.1. For a given tuning parameter λ > 0, the LoLI (LASSO226

on Latent Indices) method is defined by the penalized likelihood227

`pen(Ψ) = `(Ψ)− λ
p∑

j=1

(
wjβ

2
j +

j−1∑
k=1

wkj|γkj|+
p∑

k=j+1

wjk|γjk|

)1/2

,

where {wj > 0; j = 1, . . . , p} and {wjk > 0; j = 1, . . . , p; k = 2, . . . , p} are228

adaptive weights constructed a-priori to guide feature selection, and `(Ψ) as229

defined in equation (2).230

If the vector zi contains covariates that we wish to select on, then the231

above penalized log-likelihood can be augmented with further penalties to232

select on the elements of α. However, we do not consider this extension here233

given that in the motivating HILDA survey the covariates zi are included to234

adjust for potential confounding. Also, if we only consider a subset rather235

than all possible pairwise interactions in equation (1), then the penalty in236

Definition 2.1 can be modified to accommodate this setting.237
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LoLI formally accounts for the hierarchical structure of the coefficients by238

enforcing two types of sparsity. For latent index j = 1, . . . , p, we first impose239

individual coefficient sparsity in the form of an adaptive LASSO penalty240

(Zou, 2006) on all associated interaction effects. This means interaction terms241

between two latent indices can be removed from the model without affecting242

selection of the parent main effects. Second, we impose group coefficient243

sparsity in the form of the group LASSO penalty (Yuan and Lin, 2006),244

which encourages the entire quantity wjβ
2
j +
∑j−1

k=1wkj|γkj|+
∑p

k=j+1wjk|γjk|245

to be shrunk to zero. This implies that if either one of the parent main effects246

for a latent index is shrunk to zero, then any child interaction term must also247

be shrunk to zero. The proposed penalty in Definition 2.1 is by no means248

the only way of constructing penalties that respect this hierarchical nature249

of the coefficients. For example, we could have implemented various flavors250

of the family of composite absolute penalties (CAP, Zhao et al., 2009), and251

indeed the proposed penalty can be regarded as a specific case from the CAP252

family. Importantly, the innovation of LoLI lies in the construction of the253

latent indices and the regularization of the corresponding coefficients, rather254

than in the penalty itself.255

As an aside, it is possible to use other approaches to perform the model256

selection instead e.g., using information criteria for comparing candidate la-257

tent indices models. We prefer a regularization approach as it is both more258

computationally efficient (it simplifies the choice of model selection from a259

discrete space to a one-dimensional search along a continuous solution path260

dictated by λ, and allows us to make use of warm starts for both the parame-261

ter estimates and the latent indices), and tends to be more stable (prediction262

of the latent indices occurs in a “smooth” manner as the tuning parameter263

varies, in contrast to approaches such as information criteria where the latent264

indices are re-predicted for every candidate model).265

We construct the adaptive weights in Definition 2.1 from a fit of the266

saturated model. Specifically, let β̃ and γ̃ denote the vectors of main and267

interaction effect coefficients, respectively, obtained based on maximum like-268

lihood estimation of the unpenalized model. Then we set wj = β̃−2j and269

wjk = |γ̃jk|−1 as the adaptive weights. We remark that the construction270

of the adaptive weights for LoLI is relatively stable precisely because, as271

pointed out in Section 1, we have substantially reduced the dimensionality272

of the problem before any variable selection is performed. At the same time,273

in practice it is possible for potential instability to still arise particularly if274

the number of latent indices is large relative to the number of observations,275
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and may motivate other methods of constructing the adaptive weights (e.g.,276

Garcia and Mueller, 2016).277

2.1. Groups of Ordinal Predictors278

Suppose now we want to construct a single latent index for groups of279

ordinal predictors, but with different cutoffs for each predictor. Such cases280

commonly arise in item response theory, where a group of ordinal predictors281

are believed to all correspond to the same latent quantity. Let the p predictors282

be a-priori divided into G < p non-overlapping groups, such that Ag denotes283

the set of predictors in group g = 1, . . . , G with dimension 1 ≤ pg < p, and284 ∑G
g=1 pg = p. Then the latent indices model involves G latent indices and285

their interactions such that equation (1) is modified to µi = z>i α + u>i β +286 ∑
1≤g<h≤G uiguihγgh where ui = (ui1, . . . , uiG)> and β = (β1, . . . , βG)>. The287

penalized likelihood for this particular model is then given by `pen(Ψ) =288

`(Ψ)−λ
∑G

g=1

(
wgβ

2
g +

∑g−1
h=1whg|γhg|+

∑G
h=g+1wgh|γgh|

)1/2
, where `(Ψ) =289 ∑n

i=1 log
{∫

f(yi|ui, zi,Ψ)
∏G

g=1

(∏
j∈Ag

∏Lj

l=1 f(x∗ijl|uig,Ψ)f(uig) duig

)}
. We290

consider two possible choices for the conditional distribution f(x∗ijl|uig,Ψ):291

if pg = 1, then we set f(x∗ijl|uig,Ψ) = I(ξj,l−1 < uig < ξj,l)
x∗
ijl . This is con-292

sistent with the limiting case in equation (2). If pg > 1, then we propose to293

use f(x∗ijl|uig,Ψ) = {Φ(ξj,l − ajuig)−Φ(ξj,l−1 − ajuig)}x
∗
ijl , where Φ(·) is the294

cumulative density function of the standard normal distribution, and aj is295

an additional covariate specific slope parameter controlling the “discrimina-296

tion” between the various levels of the ordinal predictor (Samejima, 1969).297

The use of soft probabilistic differences, as opposed to hard indicator func-298

tions when pg = 1, is motivated from graded response models (Samejima,299

1969) which model the conditional distribution of the ordinal variables using300

differences in cumulative probabilities when groups of the ordinal variables301

are reduced to the same latent index. It is also possible to use alternative302

link functions such as the logit, but given the latent index is assumed to be303

normally distributed, then it is more natural to use the probit link. More304

importantly, note the joint construction and regression of latent indices mean305

LoLI continues to have the advantage of being able to borrow strength from306

yi to better predict the uig, which in turn to lead to better inference on βg307

and γgh.308

For the remainder of this article, unless stated otherwise, we will focus309

on the general formulation of LoLI given by Definition 2.1 i.e., where each310
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ordinal predictor has its own continuous latent index.311

3. Estimation312

We propose a two-step estimation approach to calculate estimates for313

LoLI. First, we fit a series of marginal regression models using the ordinal314

predictors as the response to obtain estimates of the cutoffs (ξ>1 , . . . , ξ
>
p )>.315

Conditional on these cutoff estimates, we then estimate the remaining pa-316

rameters and perform variable selection on the coefficients using an MCEM317

algorithm. A similar estimation method can be formulated for the case of318

groups of ordinal predictors in Section 2.1, with the additional complica-319

tion that we also estimate the slopes (a1, . . . , ap)
>, and we provide details320

for this in Appendix A.3. Our proposed two-step estimation method bears321

similarities to other two-step estimation procedures commonly used in factor322

analytic models (e.g., Lee et al., 1995) as well as copula-based models (e.g.,323

Joe, 2005).324

3.1. Marginal Cumulative Probit Regression Models325

To estimate of the cutoff parameters, which we denote as ξj for j =326

1, . . . , p, we fit a marginal cumulative probit regression model to each ordinal327

predictor.328

ξj = arg max
ξj

n∑
i=1

log

∫ Lj∏
l=1

I(ξj,l−1 < uij < ξj,l)
x∗
ijl f(uij) duij


= arg max

ξj

n∑
i=1

Lj∑
l=1

x∗ijl log {Φ(ξj,l)− Φ(ξj,l−1)} .

Such cumulative probit models are straightforwardly fitted via maximum329

likelihood estimation, and in fact analytical solutions can be derived based330

on the cumulative frequencies of the levels of each ordinal predictor; see Ap-331

pendix A.1 for details of these solutions. On the other hand, formulating332

the problem in terms of multinomial log-likelihood estimation as above di-333

rectly facilities theoretical investigation. Specifically, in Appendix A.1 we334

show that the cutoffs based on fitting the marginal regression models above335

are consistent for the true cutoff values. Intuitively, this is because the con-336

ditional distribution of the response depends on the latent indices only and337
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not the cutoffs. Therefore, yi does not provide any direct information regard-338

ing the ξj’s and we can achieve reasonable estimates using only the ordinal339

predictors. Such a result can be used to further prove, under mild regularity340

conditions on the likelihood function in equation (2) and the tuning param-341

eter, that all parameters in Ψ are consistently estimated by the two-step342

procedure.343

3.2. Monte-Carlo Expectation Maximization Algorithm344

To calculate the remaining LoLI estimates, we employ a MCEM algo-345

rithm with an importance sampling algorithm to perform the E-step. The346

unpenalized complete log-likelihood for the latent indices model is given by347

`c(Ψ,u) =
n∑

i=1

`ci(Ψ,ui)

= −1

2
n log(σ2)− (2σ2)−1

n∑
i=1

(
yi − z>i α− u>i β −

∑
1≤j<k≤p

uijuikγjk

)2

+
n∑

i=1

p∑
j=1

Lj∑
l=1

x∗ijl log
{
I(ξj,l−1 < uij < ξj,l)

}
− 1

2

n∑
i=1

u>i ui,

where f(ui) =
∏p

j=1 f(uij) is the Np(0, I) density, and terms constant with348

respect to Ψ are dropped. In practice, one could add a small amount ε > 0 to349

the third term e.g., log
{
I(ξj,l−1 < uij < ξj,l) + ε

}
so that `c(Ψ,u) remains350

finite for all u. However, as we shall see below our proposed importance351

sampling algorithm for the E-step ensures that I(ξj,l−1 < uij < ξj,l) = 1 is352

always satisfied for every j. For fixed λ and a set of adaptive weights, the353

MCEM algorithm involves iterating between the following two steps until354

convergence. At iteration t, suppose we have estimates Ψ̂(t). In the E-step,355

we calculate the expectation of the complete log-likelihood with respect to the356

conditional distribution of the latent indices, also known as the Q function,357

Q(Ψ|Ψ̂(t)) =
∫
`c(Ψ,u)f(u|y, z,x∗, Ψ̂(t))du. In the M-step, we obtain an358

updated estimate Ψ̂(t+1) that maximizes (or at least leads to an increase in)359

the function360

Q(Ψ|Ψ̂(t))− λ
p∑

j=1

(
wjβ

2
j +

j−1∑
k=1

wkj|γkj|+
p∑

k=j+1

wjk|γjk|

)1/2

.
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To perform the E-step, we propose using importance sampling. Specifi-361

cally, for each i = 1, . . . , n, suppose we obtainM samples {um
i = (umi1, . . . , u

m
ip);m =362

1, . . . ,M} from a proposal distribution h(ui). For all the simulations and ap-363

plications later on, we used M = 1000. Then we approximate the Q-function364

as365

Q(Ψ|Ψ̂(t)) ≈
n∑

i=1

M∑
m=1

vmi `ci(Ψ,um
i ), (3)

where366

vmi =

f(yi|um
i , zi, Ψ̂

(t))
p∏

j=1

f(x∗ij|umij , Ψ̂(t))f(um
i )h(um

i )−1(
M∑

m=1

f(yi|um
i , zi, Ψ̂

(t))
p∏

j=1

f(x∗ij|umij , Ψ̂(t))f(um
i )h(um

i )−1

) .
We propose sampling from a truncated multivariate normal distribution as367

follows. Let T N p(µ,A,a, b) generically denote the truncated p-dimensional368

multivariate normal distribution with location vector µ, covariance matrix369

A, and a and b are the vectors of the lower and upper truncation points370

respectively. Then we use371

h(ui) = T N p

(
Σ̂(t)β̂(t)(yi − z>i α̂(t)), Σ̂(t), ζ−, ζ+

)
, (4)

where Σ̂(t) = (Ip + (σ̂(t))−2β̂(t)(β̂(t))>)−1, Ip is the identity matrix of dimen-372

sion p, ζ
(t)

− = (
∑L1

l=1 x
∗
i1lξ1,l−1, . . . ,

∑Lp

l=1 x
∗
iplξp,l−1), and373

ζ+ = (
∑L1

l=1 x
∗
i1lξ1,l, . . . ,

∑Lp

l=1 x
∗
iplξp,l). There are three connected advantages374

for using the above as the proposal distribution: 1) suppose all the interac-375

tion terms between the latent indices are zero for all j and k. Then applying376

straightforward algebra to the complete log-likelihood `c(Ψ,u), we can show377

that f(u|y, z,x∗, Ψ̂(t)) is exactly equal to equation (4) and the E-step col-378

lapses to directly sampling from the conditional distribution. This result,379

namely that an exact conditional distribution to sample from can be ob-380

tained, relies on the assumption of normality for the latent indices, and indeed381

is an additional advantage of assuming the u′ijs are normally distributed.; 2)382

in many applications of LoLI, we expect the true interactions to be sparse383

i.e., most elements of γ are equal to zero. In such cases, even though equa-384

tion (4) is not exactly equal to f(u|y, z,x∗, Ψ̂(t)), it should still be a relatively385
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good approximation; 3) it is clear from the complete log-likelihood `c(Ψ,u)386

that the conditional distribution of the latent indices, f(u|y, z,x∗, Ψ̂(t)), is387

bounded above and below by ζ+ and ζ− respectively. Therefore, it is sen-388

sible to choose a proposal distribution whose support coincides with that of389

the conditional distribution, rather than a proposal distribution defined on390

R
p (say). Indeed, using equation (4) simplifies calculation of the importance391

weights to vmi = f(yi|um
i , zi, Ψ̂

(t))f(um
i )h(um

i )−1
(∑M

m=1 f(yi|um
i , zi, Ψ̂

(t))f(um
i )h(um

i )−1
)−1

392

since
∏p

j=1 f(x∗ij|umij , Ψ̂(t)) =
∏p

j=1

∏Lj

l=1 I
(
ξj,l−1 < uij < ξj,l

)x∗
ijl = 1 by defi-393

nition of the proposal distribution.394

With the Q-function approximated using equation (3) and equation (4),395

a series of conditional M-steps can then be performed to obtain updates396

Ψ̂(t+1). The details of these updates are provided in Appendix A.2. For both397

the interaction γjk and main effect βj terms, we approximate the penalty398

in Definition 2.1 using the local linear approximation, thereby facilitating399

the use of soft threshold operators to efficiently perform coordinate wise400

optimization. Note predictions of the latent indices can be straightforwardly401

obtained as part of the MCEM algorithm e.g., for the i-th observation, the402

prediction E(u|y, z,x∗, Ψ̂) can be approximated by M−1∑M
m=1 v

m
i u

m
i where403

vmi is discussed above.404

It is important to discuss the challenges that would be involved, if we405

were to also estimate the cutoffs as part of the M-step above, in contrast to406

our proposed computationally efficient method of estimating them separately.407

Since the proposal distribution in equation (4) is non-zero in precisely the408

region defined by the cutoff estimates at iteration t of the MCEM algorithm,409

it follows that these estimates maximize the Q-function equation (3) and410

therefore ξ̂
(t+1)
j = ξ̂

(t)
j i.e., no update can be achieved directly using the411

EM algorithm. This problem is a special case of a more general issue first412

formalized by (Ruud, 1991), who showed that the EM algorithm does not413

work if the support of the conditional distribution of the missing data depends414

on parameters to be estimated. There are a number of possible ways to415

overcome this issue. For example, we can reparameterize the model such416

that cutoff parameters appear in other parts of the complete log-likelihood417

instead of in the log indicator functions. Even for simple ordinal probit418

models however, this approach is computationally burdensome as it involves419

having to construct a vector of latent indices for each uij itself. Another420

approach to estimating the cutoffs is to sample from f(uij) directly in the421

E-step, or at least a distribution with a support not defined by the cutoffs.422
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However, this is extremely inefficient since the cutoffs themselves will result in423

a large proportion of Monte-Carlo samples of uij contributing no weight to the424

integration. In summary, estimating the cutoffs within the MCEM algorithm425

presents a major bottleneck in the estimation procedure, and motivates us426

to propose the above two-step estimation approach.427

3.3. Tuning Parameter Selection428

We choose the single tuning parameter in Definition 2.1 using the Ex-429

tended Regularized Information Criterion (ERIC, Hui et al., 2015) devel-430

oped originally for penalized regression modeling. With our specific data431

and model structure, ERIC is defined as ERIC(λ) = −2`(Ψ̂) +432

log (nλ−1)
{∑p

j=1 I(β̂j 6= 0) +
∑

1≤j<k≤p I(γ̂jk 6= 0)
}

, where `(Ψ̂) is the un-433

penalized marginal log-likelihood evaluated at the LoLI estimates, and the434

model complexity is based on counting the number of estimated non-zero435

main and interaction coefficients. Note the original definition of ERIC in-436

cluded an additional parameter for tuning the severity of model complexity437

penalization, but we choose to omit that here for simplicity.438

ERIC features a dynamic model complexity penalty which depends on439

the tuning parameter itself. This means the degree of penalization induced440

by ERIC differs depending on how complex the model is already, as captured441

by λ. Smaller values of λ lead to more aggressive shrinkage, and result in less442

overfitting and sparser models. This contrasts with many other information443

criteria that employ static complexity penalties and thus penalize a fixed444

amount for every coefficient entered into the model (e.g., the AIC and BIC,445

Zhang et al., 2010). The use of a more aggressive approach to shrinkage, as446

promoted by ERIC, is particularly appropriate here given both the number of447

interaction coefficients in LoLI can still be quite large, and a-priori we believe448

that the underlying model is sparse; see the discussion below equation (4).449

Based on extensive simulations (not shown), we found that this aggressive450

shrinkage enforced by ERIC leads to better overall selection performance451

(as assessed based on the mean number of false positives and false negative452

for the main and interaction effects, similar to the simulation study below)453

compared to using, say, BIC to choose the tuning parameter for LoLI.454

4. Simulation Study455

We conducted two simulations to assess the relative performance of LoLI456

(in conjunction with ERIC) in terms of estimation, variable selection, and457
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prediction of the latent indices. Note that, while estimation consistency458

of the two-step procedure can be established (meaning the estimates from459

LoLI are asymptotically unbiased), it is also important to investigate the460

finite sample bias and variability of these estimates. In the first setting each461

ordinal predictor is associated with its own latent index, while in the second462

setting each latent index is associated with a group of ordinal predictors.463

For both simulation settings, we considered datasets of size n = 50, 100, 200,464

and for each sample size simulated 500 datasets. We also performed simula-465

tions at n = 400 and 800, and found similar trends to those discussed below466

and present these in Appendix B. We assessed estimation performance based467

on the mean squared errors (MSE), averaged across simulated datasets, of468

the quantities ‖α̂− α‖2, ‖β̂ − β‖2, and ‖γ̂ − γ‖2, where (α̂>, β̂>, γ̂>)> de-469

notes the estimates from a particular method and (α>,β>,γ>)> denotes the470

true parameter values. We assessed selection performance based on the mean471

number of false positives (FP) and false negatives (FN) separately for main472

β and interaction γ effects. We also recorded the mean computation time (in473

seconds) for each method, along with results for the MSE of the estimates of474

the cutoffs. The latter are of secondary interest compared to the parameters475

in the latent indices regression model, but nevertheless still present similar476

trends to the MSE of these other parameters; we provide the results for these477

in Appendix B.478

4.1. Setting 1479

We considered a true model with q = 3 predictors which are not di-480

mension reduced and p = 6 ordinal predictors. For the former, we gener-481

ated the covariate vector zi by setting the first element equal to one rep-482

resenting the intercept, and simulating the remaining two elements inde-483

pendently from a standard normal distribution. We set the corresponding484

true coefficient vector as α = (2, 1,−1)>. Next, we generated a vector of485

p = 6 latent indices ui from a multivariate standard normal distribution, set486

β = (1,−1, 0.5, 0, 0, 0)>, and set γ12 = −0.5 and γ23 = 0.4 while all remaining487

interaction terms were set to zero. Hence only the first three latent indices488

are truly informative and there are two pairwise interactions between these.489

The mean µi was then constructed based on equation (1), and given this the490

response was generated as yi ∼ N (µi, 1) i.e., σ2 = 1. Finally, we constructed491

the ordinal six predictors based on the following set of cutoffs: L1 = L2 = 3492

with ξ̌1 = ξ̌2 = (−1, 1)>, L3 = L4 = 4 with ξ̌3 = ξ̌4 = (−1, 0, 1.25)>, and493

L5 = L6 = 5 and ξ̌5 = ξ̌6 = (−1.5,−1, 0.5, 1.5)>. Afterward, we generated494
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the ordinal predictors xij as per equation (2). That is, we simulated the495

vector (x∗ij1, . . . , x
∗
ijLj

)> from a multinomial distribution with trial size 1 and496

probabilities I(ξ̌j,l−1 < uij < ξ̌j,l); l = 1, . . . , Lj, and set xij = l if x∗ijl = 1. Fi-497

nally, to obtain the “true” vector of cutoff parameters associated with LoLI,498

we set ξj = ξ̌j− ξ̌j1 for j = 1, . . . , 6 such that the first element of ξj is always499

equal to zero (which is required for parameter identifiability in LoLI). To500

clarify, in analyzing the data we only have access to yi, zi, and xi. We also501

conducted simulations with σ2 = 4 and 16, reflecting a weaker signal-to-noise502

ratio; results for these are presented in Appendix B, and exhibit similar con-503

clusions to those below (except all methods performed worse compared with504

when σ2 = 1, as anticipated).505

Since each ordinal predictor is associated with its own index, we com-506

pared LoLI with three available methods: 1) a penalized likelihood method507

using a hierarchical LASSO penalty via the hierNet package (Bien and Tib-508

shirani, 2014), treating each ordinal predictor in xi as continuous and using509

the default ten–fold cross validation to choose the tuning parameter. Note510

that, in the same way we view LoLI in conjunction with ERIC as a single511

approach, we also view the hierarchical LASSO penalty in conjunction with512

cross validation as a single approach, although we acknowledge that future513

research and comparisons could explore choosing the tuning parameter in514

LoLI via cross validation, and the general issue of tuning parameter selec-515

tion for the hierarchical LASSO; 2) backward elimination from a saturated516

model i.e., all main and pairwise interaction effects between the elements of517

xi included, using BIC and treating each ordinal predictor in xi as continu-518

ous; 3) backward elimination from a saturated model using BIC and setting519

up dummy variables for each ordinal predictor in xi. All three alternative520

methods respect the hierarchical nature of the covariates i.e., main effects can521

only be removed from the model if all interaction effects involving it have522

already been removed. We also included a “gold standard” method where we523

treated the latent indices as if they were observed and performed backward524

elimination from a saturated model using BIC. Two stage approaches were525

not considered in this setting, since we cannot fit latent variable models when526

each ordinal predictor corresponds to its own latent index.527

Not surprisingly, LoLI performs substantially better than the alterna-528

tive methods (Table 1), with its estimation and selection performance much529

closer to the “gold standard” method compared to either treating the ordi-530

nal predictors as either continuous or constructing dummy variables. LoLI531
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Table 1: Simulation results for Setting 1 with σ2 = 1, comparing LoLI, penalized like-
lihood using hierNet, backward elimination treating the ordinal predictors as continu-
ous (Backward-Cont), backward elimination treating the ordinal predictors as categorical
(Backward-Cat), backward elimination assuming the latent indices are assumed known
(Backward-True). In the results, FP/FN (β) refers to the mean number of false posi-
tives/mean number of false negatives for the estimates of β, say. Results are not available
for Backward-Cat when n = 50, due to the inability to estimate the saturated model with
such a small sample size.

n Criterion LoLI hierNet Backward-Cont Backward-Cat Backward-True

50

MSE (α) 0.160 0.381 129.81 - 0.098
MSE (β) 0.366 0.739 50.595 - 0.211
MSE (γ) 0.336 0.385 3.820 - 0.250
FP/FN (β) 0.180/0.372 1.382/0.466 1.588/0.140 - 1.554/0.032
FP/FN (γ) 0.080/1.460 0.688/1.640 1.862/1.222 - 1.892/0.558

100

MSE (α) 0.069 0.152 37.35 621.306 0.034
MSE (β) 0.140 0.275 17.538 - 0.055
MSE (γ) 0.209 0.307 1.233 - 0.088
FP/FN (β) 0.110/0.102 1.362/0.046 0.826/0.050 2.202/0.138 0.758/0.002
FP/FN (γ) 0.066/0.922 0.692/1.226 0.806/0.796 6.574/1.000 0.658/0.094

200

MSE (α) 0.034 0.053 17.217 10.050 0.015
MSE (β) 0.051 0.209 12.333 - 0.020
MSE (γ) 0.071 0.187 0.762 - 0.003
FP/FN (β) 0.060/0.004 1.564/0 0.508/0 0/0.154 0.424/0
FP/FN (γ) 0.052/0.222 0.776/0.518 0.436/0.224 0.002/1.576 0.360/0.002

almost always had the lowest mean number of false positives (indicative of532

overfitting) without any considerable increase in the mean number of false533

negatives (indicative of underfitting). The discrete nature of the backward534

elimination procedure led to poorer estimation performance compared to the535

two “continuous” penalized likelihood methods (LoLI and hierNet), while536

hierNet continued to overfit at large sample sizes relative to LoLI. In terms537

of computation time (see Appendix B), LoLI was the slowest of the methods,538

which was not surprising since none of the other methods attempt to recover539

a latent index for each ordinal predictor (and thus leading to worse perfor-540

mance compared to LoLI). Overall, this simulation provides strong evidence541

of the benefit of LoLI in a scenario where each ordinal predictor results from542

discretization of a continuous latent index.543
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4.2. Setting 2544

We considered a true model with q = 4 predictors which are not to be545

dimension reduced, and p = 10 ordinal predictors divided into G = 5 groups546

and latent indices. For the former, we generated the covariate vector zi by547

setting the first element equal to one and simulating the remaining three ele-548

ments from a multivariate normal distribution with zero mean vector and an549

AR1 correlation matrix such that Cov(zir, zis) = 0.4|r−s|; r, s = 2, . . . , q. We550

set the corresponding true coefficient vector as α = (−1, 1,−1, 0)>. Next, we551

generated a vector of latent indices ui from a multivariate standard normal552

distribution, set β = (1, 0.5, 0, 0, 1)>, and set γ12 = −0.8 while the remain-553

ing nine interaction terms were set to zero. This implies the first, second,554

and fifth latent indices are truly informative, and there is only one non-zero555

pairwise interaction between the first and second indices. The mean µi was556

then constructed as discussed in Section 2.1, and given this the response was557

generated as yi ∼ N (µi, 1) i.e., σ2 = 1. Again, we conducted simulations558

with σ2 = 4 and 16, and the results for these are presented in Appendix B559

and exhibit similar trends to those below.560

We constructed the ten ordinal predictors based on the following group-561

ings: A1 = {1, 2, 3},A2 = {4, 5},A3 = {6, 7},A4 = {8, 9},A5 = {10}.562

Note the fifth group contains one ordinal predictor. Furthermore, we consid-563

ered the following set of cutoffs for the ten predictors: L1 = . . . = L5 with564

ξ̌j = (−1, 0, 2)> for j = 1, 2 and ξ̌j = (−1, 0, 1.25)> for j = 3, 4, 5, then L6 =565

. . . = L10 = 5 and ξ̌j = (−1.5,−1, 0.5, 1.5)> and j = 6, . . . , 10. For groups 1566

to 4 where pg > 1, we set the slope parameter aj = 1. Based on these param-567

eters, we generated the ordinal predictors xij as in Section 2.1. Specifically,568

we simulated (x∗ij1, . . . , x
∗
ijLj

) from a multinomial distribution with trial size569

1 and probabilities given by {Φ(ξj,l− ajuig)−Φ(ξj,l−1− ajuig)}; l = 1, . . . , Lj570

for j = 1, . . . , 9 and by I(ξ̌j,l−1 < uig < ξ̌j,l); l = 1, . . . , Lj for j = 10, and set571

xij = l if x∗ijl = 1. Finally, to obtain the “true” vector of cutoff parameters572

associated with LoLI, we set ξj = ξ̌j − ξ̌j1 for j = 1, . . . , 6 such that the first573

element of ξj is always equal to zero.574

We compared LoLI with two commonly used two stage approaches: 1) a575

factor analytic model assuming five factors is fitted to all 10 ordinal predictors576

in the first stage, and then backward elimination using BIC is applied to a577

linear model with the five predicted latent indices included at the second578

stage (FA); 2) a graded response model assuming five factors is fitted in the579

first stage, and then backward elimination using BIC is applied to a linear580
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model with the four predicted latent indices included at the second stage581

(GRM). We also included a “gold standard” method where the latent indices582

are treated as observed and performed backward elimination from a saturated583

model using BIC. In addition to point estimation and selection performance,584

because all methods produced predictions of ui, we also assessed predictive585

performance based on the MSE of the quantity, n−1
∑G

g=1

∑n
i=1(ûig − uig)2,586

where ûig and uig denotes the predicted and true latent indices respectively.587

Compared to the two stage approaches, LoLI consistently had the low-588

est mean squared errors for the estimates of β and γ (Table 2). LoLI also589

performed strongly in terms of estimating the coefficients for covariates that590

were not dimension reduced, α, although the differences between the three591

methods were small at larger sample sizes. The strong point estimation per-592

formance of LoLI is further reflected in its selection performance, where it593

almost always had a smaller mean number of false positives and false nega-594

tives for both the main and interaction effects. Both two stage approaches595

had a comparably high number of false negatives even at larger sample sizes,596

and a more detailed analysis suggested that these methods tended to erro-597

neously shrink the fifth element of β (i.e., the latent index with only one598

ordinal predictor in its group) as well as the single non-zero interaction effect599

to zero. LoLI also performed best with regards to predicting the latent indices600

across all three sample sizes, reflecting the benefits of being able to borrow601

strength from the response to better predict the latent indices. Finally, in602

terms of computation time (see Appendix B) the two stage approach using603

FA was the fastest, followed by LoLI, while the two stage approach using604

GRM was by far the slowest.605

5. Application to HILDA survey606

We applied LoLI to the HILDA survey to understand the association be-607

tween different aspects of an individual’s psychosocial job quality and their608

mental health. We considered cross-sectional data from Wave 14 (correspond-609

ing to observations collected in 2014) of the survey, and focused on a set of610

n = 327 individuals who had a permanent job, no long-term health condition,611

and a postgraduate degree as their highest education level attained. For the612

response, we considered a composite mental health score which varies con-613

tinuously from 0 to 100 with higher scores representing better mental health.614

The score is derived from the mental component summary of the Short Form615

36 (SF-36) questionnaire within the HILDA survey (see Butterworth et al.,616
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Table 2: Simulation results for Setting 2 with σ2 = 1, comparing LoLI, a two stage
approach using a factor analytic model (FA), a two stage approach using a graded re-
sponse model (GRM), and backward elimination assuming the latent indices are assumed
known (Backward-True). In the results, FP/FN (β) refers to the mean number of false
positives/mean number of false negatives for the estimates of β, say.

n Criterion LoLI FA GRM Backward-True

50

MSE (α) 0.664 0.728 0.849 0.164
MSE (β) 0.654 1.237 1.660 0.122
MSE (γ) 0.652 1.164 1.537 0.218
FP/FN (β) 0.372/0.814 0.900/1.01 0.993/1.272 0.780/0
FP/FN (γ) 0.426/0.738 0.984/0.794 1.240/0.830 1.022/0
MSE (ui) 0.783 0.954 0.991 -

100

MSE (α) 0.139 0.154 0.133 0.053
MSE (β) 0.253 1.134 1.808 0.039
MSE (γ) 0.446 0.932 1.292 0.037
FP/FN (β) 0.292/0.176 0.706/0.658 0.732/1.096 0.434/0
FP/FN (γ) 0.700/0.356 0.696/0.712 0.808/0.800 0.440/0
MSE (ui) 0.718 0.913 0.914 -

200

MSE (α) 0.041 0.041 0.047 0.025
MSE (β) 0.173 0.789 1.289 0.018
MSE (γ) 0.264 0.577 0.878 0.014
FP/FN (β) 0.109/0.054 0.320/0.678 0.467/1.065 0.250/0
FP/FN (γ) 0.091/0.200 0.348/0.674 0.483/0.787 0.243/0
MSE (ui) 0.716 0.893 0.875 -

2013, and references therein). Of the n = 327 individuals, the lowest mental617

score was 4, while six individuals had the maximum possible mental health618

score of 100. To remove the boundaries at 0 and 100, we chose to apply a619

logit transformation, log{(y + 4)/(100 − y + 4)}, where the minimum score620

of 4 was added to ensure all transformed responses were finite (Warton and621

Hui, 2011). A normal probability plot (not shown) suggested the transformed622

mental health score was approximately normally distributed.623

As covariates which are not dimension reduced i.e., zi, we included age in624

years (standardized to have zero mean and unit variance) as a linear effect,625

gender (0 for female; 1 for male), and marital status (0 for married, 1 for626

otherwise). For the ordinal categorical predictors to be dimension reduced627

i.e., xi, we considered p = 12 statements concerning workplace conditions,628

to which each individual gives an ordinal score from 1 (strongly disagree) to629
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7 (strongly agree). A table of the statements can be found in Appendix C.630

Based on existing literature on the design of the statements (e.g., Butter-631

worth et al., 2011), as well as exploratory analysis involving fitting graded632

response models with various numbers of latent variables, we grouped the633

p = 12 ordinal predictors into G = 5 groups reflecting different underlying634

aspects of workplace quality: 1) degree of job demands/complexity/interest635

(3 predictors); 2) degree of job control (3 predictors); 3) degree of job stress636

and strain (2 predictors); 4) degree of job security (3 predictors); 5) effort-637

reward unfairness (1 predictor). We refer the reader to Appendix C for these638

groupings. We then applied LoLI based on these G = 5 groupings, allow-639

ing for all ten pairwise interactions between the latent indices, and using640

ERIC to select the tuning parameter. Analogously to simulation Setting641

2 in Section 4.2, we compared LoLI to two alternative methods: 1) a two642

stage method where a factor analytic model with five factors is fitted to all643

12 predictors in the first stage, and then backward elimination using BIC is644

applied to a linear model with the predicted factor scores included (FA), 2)645

a two stage method where a graded response model with five latent variables646

is fitted to all 12 predictors, and then backward elimination using BIC is647

applied to a linear model with the predicted latent indices included (GRM).648

Based on point estimates alone, all three approaches suggested that im-649

proved mental health was associated with individuals who were older, male,650

and married (Table 3). All three approaches also indicated that increased651

job demands/complexity/interest improved mental health, while higher job652

stress/strain had a strong detrimental impact on mental health. Only LoLI653

and the two stage approach using GRM provided evidence of a non-zero effect654

of increased job security on improved mental health, with a similar magnitude655

of effect to that of increased job demands/complexity/interest. LoLI further656

indicated a positive interaction between job demands/complexity/interest657

and job security. That is, the positive effect of both increased job interest658

and increased job security on an individual’s mental health was greater than659

each aspect acting on its own. We also considered scatterplot pairs of the660

predicted latent indices, and provide the results and discussion for these in661

Appendix C.662

To assess the variability of these point estimates, we calculated estimates663

of uncertainty for all three methods. For the two stage approaches using FA664

and GRM, these were obtained based on standard errors calculated from the665

linear model in the second model from the lm function in R. Keep in mind666

that these do not account for the uncertainty in the prediction of the latent667
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Table 3: Estimated coefficients and residual variance based on: 1) LoLI, 2) a two stage
approach using a factor analytic model (FA) with five factors in the first stage, 3) a two
stage approach using a graded response model (GRM) with five factors in the first stage.
Coefficients eliminated from the final model are denoted with a “.”, while uncertainty
estimates are shown for all parameters in parentheses.

Predictor LoLI FA GRM

Intercept 1.088 (0.068) 1.095 (0.068) 1.131 (0.069)
Age 0.065 (0.041) 0.058 (0.041) 0.045 (0.042)
Gender (male) 0.108 (0.089) 0.108 (0.083) 0.101 (0.083)
Martial Status (no) -0.148 (0.084) -0.126 (0.086) -0.163 (0.086)

β̂1 (job demands/complexity/interest) 0.089 (0.039) 0.131 (0.046) 0.151 (0.036)

β̂2 (job control) . . .

β̂3 (job stress/strain) -0.258 (0.043) -0.264 (0.048) -0.247 (0.039)

β̂4 (job security) 0.085 (0.040) 0.115 (0.045) .

β̂5 (effort-reward unfairness) . . .
γ̂12 . . .
γ̂13 . . .
γ̂14 0.084 (0.032) . .
γ̂15 . . .
γ̂23 . . .
γ̂24 . . .
γ̂25 . . .
γ̂34 . . .
γ̂35 . . .
γ̂45 . . .
σ̂2 0.531 0.546 0.549

indices or the model selection uncertainty (to our knowledge, there are no668

publicly available R packages that implement the two stage methods and ac-669

count for either source of uncertainty). However for LoLI, it is not obvious670

how to produce estimates of uncertainty for the non-zero estimates with the671

two-step estimation approach. Therefore, we adopted an ad-hoc approach672

and calculated an empirical information matrix based on the unpenalized673

log-likelihood `(Ψ) in equation (2), where the cutoffs were held fixed at the674

estimates obtained from the penalized fit i.e., as in Section 3.1, and all co-675

efficients not selected by LoLI were set to zero. Put another way, we can676

interpret these as uncertainty estimates for a type of “post-LoLI” unpenal-677

ized maximum likelihood estimator. In detail, we calculated the information678

matrix Î(Ψ̂1) = n−1
∑n

i=1(∂`i(Ψ̂)/∂Ψ1)(∂`i(Ψ̂)/∂Ψ1)
>, where Ψ1 denotes679

the coefficients that were selected from LoLI and Ψ̂ denotes the full vector680
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of parameter estimates obtained from LoLI. We then constructed estimates681

of uncertainty based on the the diagonal elements of Î−1(Ψ̂1). We recognize682

that future research should explore other approaches to calculate informa-683

tion matrices for LoLI, the related issue of developing uncertainty estimates684

and confidence intervals when using an adaptive LASSO penalty in general685

(Potscher and Schneider, 2009; Potscher and Leeb, 2009), as well as the more686

general problem of post model selection inference, (although note this prob-687

lem would apply to all three methods of selection here; see Lee et al., 2016).688

Interestingly, all three methods showed no clear evidence that age, gen-689

der, or marital status had substantial effects on mental health. On the other690

hand, all three methods declared their respective selected main and interac-691

tion effects of job quality as having substantive effects. In particular, LoLI692

confirmed clear evidence of main effects of job demands/complexity/interest,693

job stress/strain, and job security, as well as an important synergistic effect694

of job demands/complexity/interest and job security.695

6. Discussion696

We have proposed a new approach called the LASSO on Latent Indices for697

handling ordinal predictors in regression modeling, which jointly constructs698

a latent index for each or for groups of ordinal predictors and models the699

response directly as a function of these and their interactions. LoLI incorpo-700

rates a LASSO type penalty to perform selection of the main and interaction701

effects associated with the latent indices in a hierarchical manner. Simu-702

lations show that, compared to dummy variables or two stage approaches,703

LoLI, in conjunction with a more aggressive approach to choosing the tun-704

ing parameter, produced more accurate predictions of the latent indices and705

better selection of the associated coefficients. Applying LoLI to the HILDA706

survey revealed the compounding effects of high job demands and job strain707

on poor mental health, and a positive synergistic effect of high job security708

and low job strain on improved mental health.709

One way to view LoLI is as a special type of (penalized) measurement710

error type model (Carroll et al., 2006), where instead of an additive error711

the true latent covariate is discretized into an ordinal predictor. While this712

connection is not particularly useful in terms of its actual application, it nev-713

ertheless offers an interesting insight into how the nature and implications of714

the measurement error in LoLI is more complicated than that of the standard715

measurement error model. We explore this idea in detail in Appendix D.716
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There are a multitude of ways in which LoLI can be extended and ex-717

plored, with noteworthy ones being to constrain some of the cutoffs across718

ordinal predictors to be the same if (for example) the same rating scale is719

used for multiple predictors, how to handle cases of where some levels are720

not observed at all for one or more ordinal predictors, assessing the robust-721

ness of the LoLI approach to different sources of model misspecification, and,722

along related lines, considering distributions aside from the normal for the723

latent indices (although with such an extension the attractiveness of the trun-724

cated multivariate normal distribution for importance sampling is possibly725

diminished). A related extension would be to allow the latent indices to be726

correlated (but perhaps still normally distributed), in which case the two-727

step estimation procedure would still be possible except the multiple cutoffs728

in the first step would be estimated simultaneously via a joint cumulative729

probit regression (say); the penalty in LoLI may have to be altered though730

to account for the possible collinearity between the latent indices. In addi-731

tion, how to construct predictions using LoLI e.g., predict the response given732

a set of covariates and ordinal predictors for a new individual, would be of733

interest in further explorations. A simple approach may be to construct the734

prediction based on the marginal log-likelihood function in equation (2), but735

extended further to account for the uncertainty of the estimated parameters.736

However, more sophisticated and efficient approaches may also be possible,737

such as a hot-deck imputation type method based on matching the new set738

of covariates to those in the existing dataset and then developing some sort739

of weighted prediction for the latent indices from this.740

The issue of high-dimensionality i.e., when the number of ordinal pre-741

dictors p grows with sample size n, is also worthy of future theoretical and742

empirical study. Finally, one important extension of LoLI is data driven ap-743

proaches to choosing both the groupings and the number of groupings (latent744

indices). As proposed in this article, LoLI requires any groupings of the or-745

dinal predictors to be defined a-priori, and for the motivating HILDA survey746

there was considerable existing literature we could utilize to construct these747

groups. To relax this, we could draw each ordinal response xij from a finite748

mixture of G multinomial distributions, where each component multinomial749

distribution is associated with a different latent uig. Alternatively, we may750

not explicitly form groups at all but instead model all p ordinal predictors751

against a set of G < p (possibly correlated) latent indices, and then use752

penalties to select both G and the implicit groupings by shrinking elements753

and/or entire columns of the relevant loading matrix to zero (Hui et al.,754

25



2018).755

Acknowledgements756

This research was supported by the Australian Research Council discovery757

project grant. Thanks to the Associated Editor and Reviewers for their758

insightful comments, and to Peter Straka and Pauline O’Shaughnessy for759

useful discussions.760

Agresti, A. (2010). Analysis of Ordinal Categorical Data. Wiley Series in761

Probability and Statistics. Wiley.762

Agresti, A. (2013). Categorical Data Analysis. Wiley.763

Bartholomew, D. J., Knott, M., and Moustaki, I. (2011). Latent Variable764

Models and Factor Analysis: A Unified Approach. Wiley.765

Bien, J., Taylor, J., and Tibshirani, R. (2013). A lasso for hierarchical inter-766

actions. Annals of statistics, 41:1111–1141.767

Bien, J. and Tibshirani, R. (2014). hierNet: A Lasso for Hierarchical Inter-768

actions. R package version 1.6.769

Butterworth, P., Leach, L., McManus, S., and Stansfeld, S. (2013). Common770

mental disorders, unemployment and psychosocial job quality: is a poor771

job better than no job at all? Psychological medicine, 43:1763–1772.772

Butterworth, P., Leach, L. S., Rodgers, B., Broom, D. H., Olesen, S. C., and773

Strazdins, L. (2011). Psychosocial job adversity and health in Australia:774

analysis of data from the HILDA Survey. Australian and New Zealand775

journal of public health, 35:564–571.776

Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. (2006).777

Measurement Error in Nonlinear Models: A Modern Perspective. CRC778

press, Florida.779

Fu, Z., Parikh, C. R., and Zhou, B. (2017). Penalized variable selection in780

competing risks regression. Lifetime data analysis, 23:353–376.781

Garcia, T. P. and Mueller, S. (2016). Cox regression with exclusion frequency-782

based weights to identify neuroimaging markers relevant to Huntingtons783

disease onset. The Annals of Applied Statistics, 10:2130–2156.784

26



Haris, A., Witten, D., and Simon, N. (2016). Convex modeling of interactions785

with strong heredity. Journal of Computational and Graphical Statistics,786

25:981–1004.787

Hui, F. K. C., Mueller, S., and Welsh, A. H. (2017). Hierarchical selection788

of fixed and random effects in generalized linear mixed models. Statistica789

Sinica, 27:501–518.790

Hui, F. K. C., Tanaka, E., and Warton, D. I. (2018). Order selection and791

sparsity in latent variable models via the ordered factor LASSO. Biomet-792

rics, 74, 1311–1319.793

Hui, F. K. C., Warton, D. I., and Foster, S. D. (2015). Tuning Parameter794

Selection for the Adaptive Lasso using ERIC. Journal of the American795

Statistical Association, 110:262–269.796

Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for797

copula-based models. Journal of Multivariate Analysis, 94:401–419.798

Leach, L., Butterworth, P., Rodgers, B., and Strazdins, L. (2010). Deriv-799

ing an Evidence-Based Measure of Job Quality from the HILDA Survey.800

Australian Social Policy Journal, 9:67–86.801

Lee, J. D., Sun, D. L., Sun, Y., and Taylor, J. E. (2016). Exact post-selection802

inference, with application to the lasso. The Annals of Statistics, 44:907–803

927.804

Lee, S.-Y., Poon, W.-Y., and Bentler, P. M. (1995). A two-stage estimation805

of structural equation models with continuous and polytomous variables.806

British Journal of Mathematical and Statistical Psychology, 48:339–358.807

Linting, M., Meulman, J. J., Groenen, P. J., and van der Koojj, A. J. (2007).808

Nonlinear principal components analysis: introduction and application.809

Psychological methods, 12:336.810

Milner, A., Aitken, Z., Kavanagh, A., LaMontagne, A. D., and Petrie, D.811

(2016). Persistent and contemporaneous effects of job stressors on mental812

health: a study testing multiple analytic approaches across 13 waves of813

annually collected cohort data. Occupational & Environmental Medicine,814

73:787–793.815

27



Milner, A., Butterworth, P., Bentley, R., Kavanagh, A. M., and LaMontagne,816

A. D. (2015). Sickness Absence and Psychosocial Job Quality: An Analysis817

From a Longitudinal Survey of Working Australians, 2005–2012. American818

journal of epidemiology, 181:781–788.819

Pauger, D., Wagner, H., et al. (2019). Bayesian effect fusion for categorical820

predictors. Bayesian Analysis, 14:341–369.821

Potscher, B. M. and Leeb, H. (2009). On the distribution of penalized maxi-822

mum likelihood estimators: The LASSO, SCAD, and thresholding. Journal823

of Multivariate Analysis, 100:2065–2082.824

Potscher, B. M. and Schneider, U. (2009). On the distribution of the adaptive825

LASSO estimator. Journal of Statistical Planning and Inference, 139:2775–826

2790.827

Ruud, P. A. (1991). Extensions of estimation methods using the EM algo-828

rithm. Journal of Econometrics, 49:305–341.829

Samejima, F. (1969). Estimation of latent ability using a response pattern830

of graded scores. Psychometrika, 34:1–97.831

She, Y., Wang, Z., and Jiang, H. (2016). Group regularized estimation un-832

der structural hierarchy. Journal of the American Statistical Association,833

Accepted for publication.834

Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Mod-835

eling: Multilevel, Longitudinal, and Structural Equation Models. CRC836

Press.837

Tutz, G. and Gertheiss, J. (2016). Regularized regression for categorical data.838

Statistical Modelling, 16:161–200.839

Warton, D. I. and Hui, F. K. C. (2011). The arcsine is asinine: the analysis840

of proportions in ecology. Ecology, 92:3–10.841

Watson, N. and Wooden, M. P. (2012). The HILDA survey: a case study842

in the design and development of a successful household panel survey.843

Longitudinal and Life Course Studies, 3:369–381.844

Wedel, M. and Kamakura, W. (2001). Factor analysis with (mixed) observed845

and latent variables. Psychometrika, 66:515–530.846

28



Wei, G. C. and Tanner, M. A. (1990). A Monte Carlo implementation of the847

EM algorithm and the poor man’s data augmentation algorithms. Journal848

of the American Statistical Association, 85:699–704.849

Yan, X. and Bien, J. (2017). Hierarchical sparse modeling: A choice of two850

group lasso formulations. Statistical Science, 32:531–560.851

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression852

with grouped variables. Journal of the Royal Statistical Society: Series B853

(Statistical Methodology), 68:49–67.854

Zhang, Y., Li, R., and Tsai, C. (2010). Regularization parameter selections855

via generalized information criterion. Journal of the American Statistical856

Association, 105:312–323.857

Zhao, P., Rocha, G., and Yu, B. (2009). The composite absolute penal-858

ties family for grouped and hierarchical variable selection. The Annals of859

Statistics, 37:3468–3497.860

Zou, H. (2006). The adaptive Lasso and its oracle properties. Journal of the861

American Statistical Association, 101:1418–1429.862

29


	Introduction
	Main Modelling Challenges For Ordinal Predictors
	A New Approach and Main Contributions

	The LASSO on Latent Indices
	Groups of Ordinal Predictors

	Estimation
	Marginal Cumulative Probit Regression Models
	Monte-Carlo Expectation Maximization Algorithm
	Tuning Parameter Selection

	Simulation Study
	Setting 1
	Setting 2

	Application to HILDA survey
	Discussion

